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An elementary introduction to perturbative renormalization and renormalization group is presented.
No prior knowledge of field theory is necessary because we do not refer to a particular physical
theory. We are thus able to disentangle what is specific to field theory and what is intrinsic to
renormalization. We link the general arguments and results to real phenomena encountered in
particle physics and statistical mechanics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Hans Bethe in a seminal 1947 paper was the first to cal-
culate the energy gap, known as the Lamb shift, between the
2s and 2p levels of the hydrogen atom.1 These levels were
found to be degenerate even in Dirac’s theory, which in-
cludes relativistic corrections. Several authors had suggested
that the origin of the shift could be the interaction of the
electron with its own radiation field~and not only with the
Coulomb field!. However, to quote Bethe, ‘‘This shift comes
out infinite in all existing theories and has therefore always
been ignored.’’ Bethe’s calculation was the first to lead to a
finite, accurate result. Renormalization—in its modern per-
turbative sense—was born.2 Since then it has developed into
a general algorithm to get rid of infinities that appear at each
order of perturbation theory in~almost! all quantum field
theories~QFT!.3–7 In the meantime, the physical origin of
these divergences has also been explained~see Ref. 8 for
many interesting contributions on the history and philosophy
of renormalization and renormalization group!.

In QFT, as in ordinary quantum mechanics, the perturba-
tive calculation of any physical process involves, at each
order, a summation over~virtual! intermediate states. How-
ever, if the theory is Lorentz invariant, an infinite number of
supplementary states exist compared with the Galilean case
and their summation, being generically divergent, produces
infinities. The origin of these ‘‘new’’ states is deeply rooted
in quantum mechanics and special relativity. When these two
theories are combined, a new length scale appears, built out
of the massm of the particles: the Compton wavelength
\/mc. It vanishes in both formal limits\50 and c5`,
corresponding, respectively, to classical and Galilean theo-
ries. Because of Heisenberg inequalities, probing distances
smaller than this length scale requires energies higher than
mc2 and thus imply the creation of particles. This possibility
to create and annihilate particles forbids the localization of
the original particle better than the Compton wavelength be-
cause the particles that have just been created are strictly
identical to the original one. Quantum mechanically, these
multi-particle states play a role even when the energy in-
volved in the process under study is lower thanmc2, because
they are summed over as virtual states in perturbation theory.
Thus, the divergences of perturbation theory in QFT are di-
rectly linked to its short distance structure, which is highly
nontrivial because its description involves the infinity of
multi-particle states.

Removing these divergences has been the nightmare and
the delight of many physicists working in particle physics. It

seemed hopeless to the non-specialist to understand renor-
malization because it required prior knowledge of quantum
mechanics, relativity, electrodynamics, etc. This state of af-
fairs contributed to the nobility of the subject: studying the
ultimate constituents of matter and being incomprehensible
fit well together. However, strangely~at least at first sight!
the theoretical breakthrough in the understanding of renor-
malization beyond its algorithmic aspect came from Wilson’s
work on continuous phase transitions.9 The phenomena that
take place at these transitions are neither quantum
mechanical10 nor relativistic and are non-trivial because of
their cooperative behavior, that is, their properties at large
distances.11 Thus neither\ nor c are necessary for renormal-
ization. Something else is at work that does not require quan-
tum mechanics, relativity, summation over virtual states,
Compton wavelengths, etc., even if in the context of particle
physics they are the ingredients that make renormalization
necessary. In fact, even divergences that seemed to be the
major problem of QFT are now considered only as by-
products of the way we have interpreted quantum field theo-
ries. We know now that the invisible hand that creates diver-
gences in some theories is actually the existence in these
theories of a no man’s land in the energy~or length! scales
for which cooperative phenomena can take place, more pre-
cisely, for which fluctuations can add up coherently.12 In
some cases, they can destabilize the physical picture we were
relying on and this manifests itself as divergences. Renor-
malization, and even more renormalization group, is the right
way to deal with these fluctuations.

One of the aims of this article is to disentangle what is
specific to field theory and what is intrinsic to the renormal-
ization process. Therefore, we shall not look for a physical
model that shows divergences,13–17but we shall rather show
the general mechanism of perturbative renormalization and
the renormalization group without specifying a physical
model.

II. A TOY MODEL FOR RENORMALIZATION

In the following, we consider an unspecified theory that
involves, by hypothesis, only one free parameterg0 in terms
of which a functionF(x), representing a physical quantity, is
calculated perturbatively, that is, as a power series. An ex-
ample in QFT would be quantum electrodynamics~QED!,
which describes the interaction of charged particles such as
electrons with the electromagnetic field. For high energy pro-
cesses, the mass of the electron is negligible and the only
parameter of this theory in this energy regime is its charge,
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which is therefore the analog ofg0 . F can then represent the
cross section of a scattering process as, for instance, the scat-
tering of an electron on a heavy nucleus in which casex is
the energy–momentum four-vector of the electron. The cou-
pling constantg0 is defined by the Hamiltonian of the sys-
tem, andF is calculated perturbatively using the usual~à la
Feynman! approach. Another important example is continu-
ous phase transitions. For fluids,F could represent a
density–density correlation function and for magnetism a
spin–spin correlation function.18 Yet another example is the
solution of a differential equation that can arise in some
physical context and that can show divergences~see the fol-
lowing!.

It is convenient for what follows to assume thatF(x) has
the form:

F~x!5g01g0
2F1~x!1g0

3F2~x!1 ¯ . ~1!

Up to a redefinition ofF, this form is general and corre-
sponds to what is really encountered in field theory. Let us
now assume that the perturbation expansion ofF(x) is ill-
defined and that theFi(x) are functions involving divergent
quantities. An example of such a function is

F1~x!5aE
0

` dt

t1x
, ~2!

which is logarithmically divergent at the upper limit. This
example has been chosen because it shares many common
features with divergent integrals encountered in QFT: the
integral corresponds to the summation over virtual states and
a(t1x)21 represents the probability amplitude associated
with each of these states.19

A simple although crucial observation is that because there
is only one free parameter in the theory by hypothesis, only
one ‘‘measurement’’ ofF(x), say at the pointx5m, is nec-
essary to fully specify the theory we are studying. Such a
measurement is used to fix the value ofg0 so as to reproduce
the experimental value ofF(m). For QED for instance, this
procedure would mean that:

~i! We start by writing a general Hamiltonian compatible
with basic assumptions, for example, relativity, cau-
sality, locality, and gauge invariance.

~ii ! We calculate physical processes at a given order of
perturbation theory.

~iii ! We fix the free parameter~s! of the initial Hamiltonian
to reproduce at this order the experimental data.

This last step requires as much data as there are free pa-
rameters. Once the parameters are fixed, the theory is com-
pletely determined and thus predictive. One could then think
that it does not matter whether we parametrize the theory in
terms of g0 , which is only useful in intermediate calcula-
tions, or with a ‘‘physical,’’ that is, a measured quantity
F(m), becauseg0 will be replaced by this quantity anyway.
Having this freedom is indeed the generic situation in phys-
ics, but the subtlety here is that the perturbation expansion of
F(x) is singular, and, thus, so is the relationship betweeng0

andF(m). Thus, it seems crucial to reparametrizeF in terms
of F(m) when the expansion is ill-defined.

The renormalizability hypothesisis that the reparametriza-
tion of the theory in terms of a physical quantity, instead of
g0 , is enough to turn the perturbation expansion into a well-

defined expansion. The hypothesis is therefore that the prob-
lem does not come from the perturbation expansion itself,
that is, from the functionsFi(x), but from the choice of
parameter used to perform it. This hypothesis means that the
physical quantity,F(x), initially represented by its ill-
defined expansion Eq.~1!, should have a well-defined pertur-
bation expansion once it is calculated in terms of the physi-
cal parameterF(m). This is the simplest hypothesis we can
make, because it amounts to preserving thex-dependence of
the functionsFi(x) and only modifying the coupling con-
stantg0 . Thus, we assume thatF(x) is known at one point
m, and we definegR by

F~m!5gR . ~3!

In the following, and by analogy with QFT, we callgR the
renormalized coupling constant and Eq.~3! a ‘‘renormaliza-
tion prescription,’’ a barbarian name for such a trivial opera-
tion.

We are now in a position to discuss the renormalization
program. It consists of reparametrizing the perturbation ex-
pansion ofF so that it obeys the prescription of Eq.~3!. The
point here is that we cannot use Eq.~3! together with Eq.~1!
because Eq.~1! is ill-defined. We first need to give a well-
defined meaning to the perturbation expansion. This is the
regularization procedure which is the first step of any
renormalization.20,21 The idea is to define the perturbation
expansion ofF by a limit such that~i! the Fi(x) are well-
defined before the limit is taken, and~ii ! after the renormal-
ization has been performed, the original formal expansion is
recovered when the limit is taken.

We thus introduce a new set of~regularized! functionsFL

and Fi ,L , involving a new parameterL, which we call the
regulator, and such that forL finite all these functions are
finite. We thus define

FL~x!5FL~x,g0 ,L!5g01g0
2F1,L~x!1g0

3F2,L~x!1 ¯ .
~4!

There are infinitely many ways of regularizing theFi ’s and
for the example given in Eq.~2!, it can consist for instance in
introducing a cut-off in the following integral:

F1,L~x!5aE
0

L dt

t1x
. ~5!

Different regularization schemes can lead to very different
intermediate calculations, but must all lead to identical
results.22 For instance, dimensional regularization is widely
used in QFT because it preserves Lorentz and gauge
symmetries.13–15,23We do not need here to specify a regular-
ization for the functionF, because our arguments will be
general and the few calculations elementary.

Once a regularization scheme has been chosen, it is pos-
sible to use the renormalization prescription, Eq.~3!, to-
gether with the regularized expansion, Eq.~4!, to obtain a
well-defined perturbation series forFL in terms of the physi-
cal couplinggR . If this expansion makes sense—this is the
renormalizability hypothesis—it must be finite even in the
limit L→`, because it expresses a finite physical quantity
F(x) in terms of a physical quantitygR . Thus, the renormal-
ization program consists first in changingF(x,g0) to
FL(x,g0 ,L), then in rewritingFL in terms ofgR andm,

FL~x,g0 ,L!→FL~x,gR ,m!, ~6!
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and only then taking the limitL→` at fixed gR and m. If
this limit exists,F`(x) is by hypothesis the functionF(x):

F~x!5F~x,gR ,m! 5
L→`

FL~x,gR ,m!. ~7!

Of course, the divergences must still be somewhere, and we
shall see that they survive in the relationship betweeng0 and
gR ; at fixedgR , g0 diverges whenL→`. In the traditional
interpretation of renormalization, this divergence is supposed
to be harmless becauseg0 is supposed to be a nonphysical
quantity. We shall come back to this point later.

The renormalization program is performed recursively,
and we now implement it order by order to see how it works
and the constraints on the perturbation expansion that it im-
plies. Let us emphasize that the series expansion we shall use
in intermediate calculations are highly formal because they
are ill-defined in the limitL5`. They are justified only by
the result we finally obtain: a good perturbation expansion in
terms ofgR .24

• Renormalization at order g0 . At this orderF(x) is con-
stant and given by

FL~x!5g01O~g0
2!. ~8!

Thus the use of Eq.~3! leads to

g05gR1O~gR
2 !. ~9!

• Renormalization at order g0
2 . Our only freedom to elimi-

nate the divergence ofFL(x) is to redefineg0 . Because we
are working perturbatively, we expandg0 as a power series
in gR . Thus, we set

g05gR1d2g1d3g1 ¯ , ~10!

wheredng;O(gR
n). At ordergR

2 we obtain

FL~x!5gR1d2g1gR
2F1,L~x!1O~gR

3 !, ~11!

where we have usedg0
25gR

21O(gR
3). If we impose Eq.~3!

at this order, we obtain

d2g52gR
2F1,L~m!, ~12!

which diverges whenL→`. In our example, Eq.~5!, we
find

d2g52agR
2E

0

L dt

t1m
52agR

2 log
L1m

m
. ~13!

If we substitute Eq.~12! into Eq. ~11!, we obtainFL to this
order:

FL~x!5gR1gR
2~F1,L~x!2F1,L~m!!1O~gR

3 !. ~14!

It is clear that this expression forFL(x) is finite for all x at
this order if and only if the ‘‘divergent’’ part ofF1,L(x) ~the
part that becomes divergent whenL→`) is exactly canceled
by that ofF1,L(m), that is, if and only if

F1,L~x!2F1,L~m! is regular in x and m for L→`.
~15!

This condition of course means that the divergent part of
F1,L(x) must be a constant, that is, isx-independent. If this
is so, then we define the functionF(x)—now called
renormalized—as the limit ofFL(x) whenL→`. The con-
dition ~15! is fulfilled for the example of Eq.~2!, and we
trivially find that F(x) reads:

F~x!5gR1a~m2x!gR
2E

0

` dt

~ t1x!~ t1m!
1O~gR

3 !, ~16!

which is obviously well defined and such that the prescrip-
tion of Eq.~3! is verified. We say that we have renormalized
the theory to this order.

Before going to the next order of perturbation theory, let
us note two important facts. First, the renormalization proce-
dure consists of ‘‘adding a divergent term’’d2g to FL to
remove its divergence. The cancellation takes place between
the second term of its expansion and the first one of order
g0 . Both lead to a term of ordergR

2 , the one coming from
the expansion ofg0 in terms of gR being tuned so as to
cancel the divergence of the other. This mechanism of can-
cellation is a general phenomenon: a divergence coming
from thenth term of the perturbation expansion is canceled
by the expansion in powers ofgR of the n21 preceding
terms. Second, this cancellation is possible for allx only if
the divergence of F1,L(x) is a number, that is, is
x-independent. If it is not so, thenF1,L(x)2F1,L(m) would
still be divergent;xÞm. This divergence would require the
imposition of at least one more renormalization prescription
to be removed and this second prescription would define a
second, independent, coupling constant~see Appendix A for
two functions, one renormalizable and one that is not!. The
necessity for a second measurement ofF(x) would contra-
dict our assumption that there is only one free parameter in
the theory. Thus we conclude that this assumption drastically
constrains thex-dependence of the divergences at orderg0

2.
We actually show in the following that this constraint propa-
gates to any order of perturbation theory in a nontrivial way.
We also will show that together with dimensional analysis
and for a very wide and important class of theories, these
constraints are sufficient to determine the analytical form of
the divergences.

• Renormalization at order g0
3. We suppose thatF can be

renormalized at ordergR
2 , that is, condition~15! is fulfilled.

To understand the structure of the renormalization procedure,
it is necessary to go one step further. At ordergR

3 we obtain

FL~x!5gR1d2g1d3g1~gR
212gRd2g!F1,L~x!

1gR
3F2,L~x!1O~gR

4 !, ~17!

where we have usedg0
35gR

31O(gR
4) andg0

25gR
212gRd2g

1O(gR
4). We again impose the prescription Eq.~3! and ob-

tain

d3g52gR
3~F1,L~m!!22gR

3F2,L~m!. ~18!

If we substitute Eq.~18! in Eq. ~17!, we obtain

FL~x!5gR1gR
2@F1,L~x!2F1,L~m!#1gR

3@F2,L~x!

2F2,L~m!22F1,L~m!~F1,L~x!2F1,L~m!!#

1O~gR
4 !. ~19!

Once again, we require that the divergence has been sub-
tracted for allx which imposes on thex-dependence of the
divergent part ofF2,L(x):

F2,L~x!2F2,L~m!22F1,L~m!~F1,L~x!

2F1,L~m!! is regular in x and m as L→`. ~20!
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Note that this constraint involves not onlyF2,L , but also
F1,L . It is convenient to rewriteF1,L(x) andF2,L(x) as the
sum of a regular and of singular~whenL→`) part:

Fi ,L~x!5Fi ,L
s ~x!1Fi ,L

r ~x!. ~21!

Because`1anything finite5`, this decomposition is not
unique: theFi ,L

s (x) are defined up to a regular part. It is
convenient to chooseF1,L

s (x) such that

F1,L
s ~x!2F1,L

s ~m! →
L→`

0, ~22!

which, of course, implies condition~15!. We show in Appen-
dix B that, reciprocally, this choice is always possible if~15!
is fulfilled. As already stated, Eq.~22! means that the diver-
gent part ofF1,L is x-independent. We can actually impose a
more stringent condition onF1,L

s because, by again tuning
the regular part ofF1,L , we can chooseF1,L

s to be com-
pletely independent ofx, for anyL. We thus define

F1,L
s ~x!5 f 1~L!. ~23!

In our example, Eq.~5!, we can choose

f 1~L!5a logL, F1,L
r ~x!5a logS L1x

Lx D . ~24!

We now substitute Eq.~23! into Eq.~20! and, using the same
kind of arguments as in Appendix B, we obtain a constraint
on the singular part ofF2,L(x) similar to the one onF1,L

s (x),
Eq. ~22!:

F2,L
s ~x!2F2,L

s ~m!22 f 1~L!@F1,L
r ~x!2F1,L

r ~m!# →
L→`

0.

~25!

Equation~25! can be rewritten as

@F2,L
s ~x!22 f 1~L!F1,L

r ~x!#

2@F2,L
s ~m!22 f 1~L!F1,L

r ~m!# →
L→`

0. ~26!

Equation~26! has the same structure as Eq.~22! up to the
replacement:F1,L

s →F2,L
s 22 f 1(L)F1,L

r and therefore has
the same kind of solution as Eq.~23!:

F2,L
s ~x!52 f 1~L!F1,L

r ~x!1 f 2~L!, ~27!

where f 2(L) is any function ofL and is independent ofx.
We see in Eq.~27! that unlikeF1,L(x), the divergent part of
F2,L(x) depends onx. However, this dependence is entirely
determined by the first order of the perturbation expansion.
The d2g term, necessary to remove theO(g0

2) divergence,
has produced at ordergR

3 an x-dependent divergent term:
2gRd2gF1,L(x). This kind ofx-dependence is also a general
phenomenon of renormalization: the~counter-!terms that re-
move divergences at a given order produce divergences at
higher orders. If the theory is renormalizable, these diver-
gences contribute to the cancellation of divergences present
in the perturbation expansion at higher orders. Thus, pertur-
bative renormalizability, that is, the possibility of eliminating
order by order all divergences by the redefinition of the cou-
pling~s!, implies a precise structure of~the divergent parts of!
the successive terms of the perturbation series. At ordern,
the singular part ofFn,L involvesx-dependent terms entirely
determined by the preceding orders plus one new term that is

x-independent. In our example of Eqs.~2! and ~24! we find

F2,L
s ~x!52a2 logL log

x1L

Lx
1 f 2~L!. ~28!

By expanding logL log(x1L)/Lx in powers ofL21 and by
again redefining the regular part ofF2,L , we obtain a simpler
form for F2,L

s (x):

F2,L
s ~x!522a2 logL logx1 f 2~L!. ~29!

This relation will be important in the following when we
shall discuss the renormalization group.

Let us draw our first conclusion. Infinities occur in the
perturbation expansion of the theory because we have as-
sumed that it was not regularized. Actually, these diver-
gences have forced us to regularize the expansion and thus to
introduce a new scaleL. Once regularization has been per-
formed, renormalization can be achieved by eliminatingg0 .
The limit L→` can then be taken. The process is recursive
and can be performed only if the divergences possess, order
by order, a very precise structure. This structure ultimately
expresses that there is only one coupling constant to be
renormalized. This means that imposing only one prescrip-
tion at x5m is enough to subtract the divergences for allx.
In general, a theory is said to be renormalizable if all diver-
gences can be recursively subtracted by imposing as many
prescriptions as there are independent parameters in the
theory. In QFT, these are masses, coupling constants, and the
normalization of the fields. An important and non-trivial
topic is thus to know which parameters are independent, be-
cause symmetries of the theory~like gauge symmetries! can
relate different parameters~and Green functions!.

Let us once again recall that renormalization is nothing but
a reparametrization in terms of the physical quantitygR .25

The price to pay for renormalizingF is that g0 becomes
infinite in the limit L→`, see Eq.~12!. We again emphasize
that if g0 is believed to be no more than a non-measurable
parameter, useful only in intermediate calculations, it is in-
deed of no consequence that this quantity is infinite in the
limit L→`. That g0 was a divergent non-physical quantity
has been common belief for decades in QFT. The physical
results given by the renormalized quantities were thought to
be calculable only in terms of unphysical quantities likeg0
~called bare quantities! that the renormalization algorithm
could only eliminate afterward. It was as if we had to make
two mistakes that compensated for each other: first introduce
bare quantities in terms of which everything was infinite, and
then eliminate them by adding other divergent quantities.
Undoubtly, the procedure worked, but, to say the least, the
interpretation seemed rather obscure.

Before studying the renormalization group, let us now spe-
cialize to a particular class of renormalizable theories.

III. RENORMALIZABLE THEORIES WITH
DIMENSIONLESS COUPLINGS

A very important class of field theories corresponds to the
situation whereg0 is dimensionless, andx, which in QFT
represents coordinates or momenta, has dimensions~or more
generally wheng0 and x have independent dimensions!. In
four-dimensional space–time, quantum electrodynamics is in
this class, because the fine structure constant is dimension-
less; quantum chromodynamics and the Weinberg–Salam
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model of electro-weak interactions are also in this class. In
four space dimensions, thef4 model relevant for the
Ginzburg–Landau–Wilson approach to critical phenomena
is in this class too. This particular class of renormalizable
theories is the cornerstone of renormalization in field theo-
ries.

Our main goal in this section is to show that, indepen-
dently of the underlying physical model, dimensional analy-
sis together with the renormalizability constraint determine
almost entirely the structure of the divergences. This under-
lying simplicity of the nature of the divergences explains that
there is no combinatorial miracle of Feynman diagrams in
QFT as it might seem at first glance. Let us now see in detail
how it works.

BecauseFL(x) has the same dimension asg0 , it also is
dimensionless and so are theFi ,L(x). The only possibility
for a dimensionless quantity likeF to be a function of a
dimensional variable likex is that there exists another di-
mensional variable such thatF depends onx only through
the ratio of these two variables. Apart fromx, the only other
quantity on whichF depends isL, which must therefore
have the same dimension asx. This is indeed the case in our
example, Eq.~5!. Thus, the functionsFi ,L(x) depend on the
ratio x/L only.26 Let us show that this is enough to prove
that theFi ,L

s (x) are sums of powers of logarithms with, for
most of them, prescribed prefactors.

Let us start withF1,L
s (x). On one hand, we have seen that

by redefining the regular part ofF1,L(x), we could take its
singular partF1,L

s (x) independent ofx, Eq. ~23!. On the
other hand, we know thatF1,L(x) is a function ofx/L. Thus,
by redefining F1,L

r (x), it must be possible to extract an
x-dependent regular part,r (x), of this function so as to build
the x/L dependence ofF1,L

s (x):

F1,L
s ~x!5 f S x

L D5 f 1~L!1r ~x!. ~30!

Hence,F1,L
s is separable into functions ofx only and ofL

only which sum up to a function ofx/L. We show in Ap-
pendix C the well-known fact that only the logarithm obeys
this property. We obtain@see Eqs.~C3! and ~C4!#

F1,L
s ~x!52 f 1S x

L D5 f 1~L!2 f 1~x!5a log
L

x
. ~31!

Therefore, for renormalizable theories and for dimensionless
functions such asF, only logarithmic divergences are al-
lowed at orderg0

2 ~in QFT, this is the so-called one-loop
term!. This is the reason why logarithms are encountered
everywhere in QFT. Note that because of dimensional analy-
sis, the finite part ofF1,L(x) is nothing butr (x), up to an
additive constant, at least forL→`. This can be checked for
the example given in Eq.~5!. Thus, by dimensional analysis,
the structure of the divergence determines that of the finite
part ~up to a constant!. Notice that things would not be that
simple if FL(x) depended on another dimensional parameter,
which is the case of massive field theories where masses and
momenta have the same dimension. In this case, the finite
part is only partially determined by the singular one.

Let us now show that the structure ofF2,L
s also is entirely

determined for renormalizable theories with dimensionless
couplings both by the renormalizability hypothesis and by

dimensional analysis. We have already partially studied this
case with the example given in Eq.~5! where F1,L

s (x) is
logarithmically divergent, a characteristic feature of these
renormalizable theories. In particular, we have shown that in
this case, renormalizability imposes at orderg0

3 that F2,L
s is

of the form given in Eq.~29!. Let us now use dimensional
analysis that once again imposes thatF2,L

s depends only on
x/L. The only freedom we have to reconstruct a function of
x/L from the form of F2,L

s given in Eq. ~29! is to add a
regular function to it. It is not difficult to find how to proceed
because the only admissible term including logL logx is
log2 L/x:

log2
L

x
5 log2 L22 logL logx1 log2 x. ~32!

Thus, to obtain the dimensionally correct extension of the
term22a2 logL logx in Eq. ~29!, we extracta2 log2 L from
f 2(L) and add the regular terma2 log2 x:

22a2 logL logx1 f 2~L!

→22a2 logL logx1a2 log2 L1@ f 2~L!2a2 log2 L#

→22a2 logL logx1a2 log2 L1a2 log2 x1@ f 2~L!

2a2 log2 L#

→a2 log2
L

x
1@ f 2~L!2a2 log2 L#. ~33!

Thus, we obtain for the new functionF2,L
s (x):

F2,L
s ~x!5a2 log2

L

x
1 f 2~L!2a2 log2 L. ~34!

Now, for f 2(L)2a2 log2 L, we can repeat the same argu-
ment as the one used previously forF1,L

s (x) @which is equal
to f 1(L), Eq. ~23!#: it is a function ofL that must become a
function of x/L only by adding a function ofx. It is thus
also a logarithm, see Eqs.~30! and ~31! and Appendix C.
Therefore, we add a logx term toF2,L

s (x) and obtain the final
result:

F2,L
s ~x!5a2 log2

L

x
1b log

L

x
, ~35!

whereb is a pure number. We emphasize that although it is
x-independent, the terma2 log2 L involved inF2,L

s (x) arises
from the logL logx term thanks to dimensional analysis. It is
thus entirely determined by the term of orderg0

2 of perturba-
tion theory. Only the sub-leading logarithmb logL/x is new.
It is not difficult now to guess the structure of the next order
of perturbation: it involves a log3 L/x with a prefactora3, a
log2 L/x term with a prefactor which is a function ofa andb
and a logL/x with a prefactor independent ofa and b. A
precise calculation shows that
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FL
s ~x!5ag0

2 log
L

x
1a2g0

3 log2
L

x
1a3g0

4 log3
L

x
1 ¯

1bg0
3 log

L

x
1

5

2
abg0

4 log2
L

x
1 ¯

1gg0
4 log

L

x
1 ¯ . ~36!

We have written the series so as to exhibit its ‘‘triangular’’
nature: the first line corresponds to the leading logarithms,
the second to the sub-leading, etc., and thenth column to the
(n11)th order of perturbation. The leading logarithms are
entirely controlled by theg0

2 term, the sub-leading logarithms
by both theg0

2 and g0
3 terms, etc. It is clear that order by

order for the divergent terms, only the log term is new, all the
log2, log3, etc., terms are determined by the preceding orders.
This structure strongly suggests that we can, at least partially,
resum the perturbation series. We notice that although the
leading logarithms form a simple geometric series, this is no
longer true for the sub-leading logarithms where, for in-
stance, the factor 5ab/2 of Eq.~36! is non-trivial. Thanks to
the renormalization group, there exists a systematic way to
perform these resummations27 ~see the following!.

We again emphasize that for our simple toy model the
divergences together with dimensional analysis determine al-
most entirely the entire functionF(x) in the limit of largeL.
To show this explicitly, we rewriteF as

FL~x,g0 ,L!5g01FL
s ~x,g0 ,L!1FL

r ~x,g0 ,L! ~37!

with FL
s (x,g0 ,L) given by Eq. ~36! at O(g0

4) and
FL

r (x,g0 ,L);O(g0
2). From dimensional analysis,

FL
r (x,g0 ,L) is also a function ofx/L only which, by defi-

nition, is finite whenL→`. Thus, for largeL,

FL
r ~x,g0 ,L!5FS x

L
,g0D.F~0,g0!. ~38!

FL
r (x) is therefore almostx-independent for largeL: it is a

(g0-dependent! number in this limit. For the sake of simplic-
ity, let us consider the case where it is vanishing:

FL~x,g0 ,L!5g01FL
s ~x,g0 ,L! ~39!

with FL
s (x,g0 ,L) a function of x/L only. By using the

renormalization prescription, Eq.~3!, we can calculategR as
a function ofg0 and L/m and by formally inverting the se-
ries, we obtain atO(gR

4):

g05gR2agR
2 log

L

m
1gr

3Fa2 log2
L

m
2b log

L

m G
1gR

4F2g log
L

m
1

5

2
ab log2

L

m
2a3 log3

L

m G . ~40!

By substituting this expression in Eqs.~36! and ~39!, we
obtain atO(gR

4):

FL~x!5gR1agR
2 log

m

x
1a2gR

3 log2
m

x
1a3gR

4 log3
m

x
•••

1bgR
3 log

m

x
1

5

2
abgR

4 log2
m

x
•••

1ggR
4 log

m

x
•••.

~41!

Thus, we find that the renormalization process leaves un-
changed the functional form ofFL , Eq. ~36!, and just con-
sists in replacing (g0 ,L) by (gR ,m). This very important
fact is related to a self-similarity property that we study in
detail from the renormalization group viewpoint. Notice that
of course any explicit dependence onL and g0 has been
eliminated in Eq.~41! and that the limitL→` can now be
safely taken, if desired.

Note that we have obtained logarithmic divergences be-
cause we have studied the renormalization of a dimension-
less coupling constant. Ifg0 was dimensional, we would
have obtained power law divergences. This is for instance
what happens in QFT for the mass terms@see also in the
following the expansion in Eq.~45!#.

IV. RENORMALIZATION GROUP

Although the renormalization group will allow us to par-
tially resum the perturbation expansion, we shall not intro-
duce it in this way. Rather, we want to examine the internal
consistency of the renormalization procedure.

We have chosen a renormalization prescription at the point
x5m wheregR is defined. Obviously, this point is not spe-
cial, and we could have chosen any other pointm8 or m9 to
parametrize the theory. Because there is only one indepen-
dent coupling constant, the different coupling constantsgR

5gR(m), gR85gR(m8), gR95gR(m9) should all be related in
such a way that F(x)5F(x,m,gR)5F(x,m8,gR8 )
5F(x,m9,gR9 ), etc. This means that there should exist an
equivalence class of parametrizations of the same theory and
that it should not matter in practice which element in the
class is chosen. This independence of the physical quantity
with respect to the choice of prescription point also means
that the changes of parametrizations should be a~renormal-
ization! group law: going from the parametrization given by
(m,gR) to that given by (m8,gR8 ) and then to that given by
(m9,gR9 ) or going directly from the first parametrization
(m,gR) to the last one (m9,gR9 ) should make no difference,
see Fig. 1.

Put this way, this statement seems to be void. Actually, it
is. More precisely, it would be so if we were performing
exact calculations: we would gain no new physical informa-
tion by implementing the renormalization group law. This is
because this group law does not reflect a symmetry of the
physics, but only of the parametrization of our solution. This
situation is completely analogous to what happens for the
solution of a differential equation: we can parametrize it at
time t in terms of the initial conditions at timet0 for in-
stance, or we can use the equation itself to calculate the
solution at an intermediate timet and then use this solution

Fig. 1. An illustration of the renormalization group: the two equivalent ways
to compose changes of parametrizations.
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as a new initial condition to parametrize the solution at time
t. The changes of initial conditions that preserve the final
solution can be composed thanks to a group law. Let us
consider, for example, the following trivial, but illuminating,
example:

ẏ~ t !5ey~ t !, y~ t0!5r 0 , ~42!

the solution of which is

y~ t !5 f ~r 0 ,t2t0!5r 0ee(t2t0). ~43!

The group law can be written as28

f ~r 0 ,t2t0!5 f ~ f ~r 0 ,t2t0!,t2t! ;t, ~44!

which you can verify using the exact solution, Eq.~43!. The
non-trivial point with these group laws is that, in general,
they are violated at any finite order of the perturbation ex-
pansions. In our previous example, we obtain to ordere,

y~ t !. f 1~r 0 ,t2t0!5r 0~11e~ t2t0!!, ~45!

and

f 1~ f 1~r 0 ,t2t0!,t2t!5r 0~11e~ t2t0!!

1e2r 0~ t2t!~t2t0!. ~46!

The group law is verified to ordere because the perturbation
expansion is exact at this order. However, it is violated by a
term of ordere2 that can be arbitrarily large even for smalle,
providedt2t0 is large enough.

The interest of the group law, Eq.~44!, is that it is possible
to enforce it and then to improve the perturbation result.
Actually, when renormalization is necessary, the group law
lets us partially resum the perturbation series of divergent
terms.

Let us now see how this improvement of the perturbation
series works for the example of the differential equation~42!.
In this case, the divergence occurs fort0→2`. Thus, t0

plays the role of the cut-offL, t2t0 of logL/m, andt2t of
logm8/m. Once t0 is finite, no divergence remains, but the
relics of the divergences occurring fort0→2` are the large
violations of the group law because both the divergences and
these violations originate in the fact that the perturbation
expansion is performed in powers ofe(t2t0) and not ofe.
To further study the relevance of the group law, it is inter-
esting to forget the higher order terms of the perturbation
expansion for a while and to look for an improved approxi-
mation that coincides at ordere with the perturbation result
and that obeys the group law at ordere2:

f 1
imp~r 0 ,t2t0!5r 0~11e~ t2t0!1e2G~ t2t0!!. ~47!

By imposing the group law, Eq.~44!, to ordere2, we obtain
a functional equation forG:

G~ t2t0!5G~t2t0!1G~ t2t!1~t2t0!~ t2t!. ~48!

If we differentiate Eq.~48! with respect tot0 and taket0

5t, we obtain, settingx5t2t,

G8~x!5x1G8~0!. ~49!

BecauseG(0)50, Eq. ~49! implies that

G~x!5
x2

2
1ax, ~50!

where a is arbitrary. Fora50, this result is actually the
perturbation result to ordere2 because

y~ t !.r 0S 11e~ t2t0!1
e2

2
~ t2t0!2D1O~e3!. ~51!

Thus, the first order in the perturbation expansion, together
with the group law, determines entirely the term of highest
degree int2t0 at the next order. Of course, to verify exactly
the group law, we should pursue the expansion ine to all
orders. It is easy to show that to orderen, the term of highest
degree int2t0 is completely determined by both the first-
order result and the group law and coincides with the pertur-
bation result: en(t2t0)n/n!. Thus, the only information
given by the perturbation expansion is that all subdominant
terms, en(t2t0)p with p,n, vanish in this example. We
could now show how the implementation of the group law
lets us resum the perturbation expansion. Unfortunately, this
example is too simple and some important features of the
renormalization group are missed in this case.~See Appendix
E for a complete discussion of the implementation of the
renormalization group on this example.! We therefore go
back to our toy model for which we specialize to renormal-
izable theories with dimensionless couplings.

Renormalization group for renormalizable theories with
dimensionless couplings. We now reconsider our toy model,
Eqs.~4!, ~36!, and~37!, from the point of view of the renor-
malization group. For the sake of simplicity, we keep only
the dominant terms at each order, that is, apart fromg0 , the
divergent ones in Eq.~39!.

First, notice that in the same waygR is clearly associated
with the scalem, Eq. ~3!, so isg0 with the scaleL because
from Eq. ~36!, we find29

FL~x5L!5g0 . ~52!

Let us define a third coupling constant associated with the
scalem8,

FL~m8!5gR8 , ~53!

and study the relationship between these different coupling
constants at orderg0

2. From

FL~x,g0 ,L!5g01ag0
2 logS L

x D1O~g0
3!, ~54!

we obtain

gR5g01ag0
2 logS L

m D1O~g0
3!, ~55!

gR85g01ag0
2 logS L

m8D1O~g0
3!. ~56!

By eliminatingg0 between these two equations, we find

gR85gR1agR
2 logS m

m8D1O~gR
3 !, ~57!

and thus, as expected, the group law controlling the change
of prescription point is verified perturbatively. We note that
the essential ingredient for this composition law is that Eq.
~57! is independent ofL. This is what ensures that the same
form can be used to change (g0 ,L) into (gR ,m) and then
(gR ,m) into (gR8 ,m8). This independence, in turn, is nothing
but the signature of perturbative renormalizability which lets
us completely eliminate at each order (g0 ,L) for (gR ,m).
Perturbatively, everything looks fine. However, the previous
calculation relies on a formal step that is not mathematically
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correct, at least for largeL. Indeed, to go from Eq.~56! to
Eq. ~57!, the seriesgR5gR(g0) must be inverted to findg0

5g0(gR) while, for L→`, the seriesgR5gR(g0) is clearly
not convergent and thus not invertible. Thus, the neglected
terms of ordergR

3 in Eq. ~57! involve a term proportional to
logL/m logm8/m—analogous to the term (t2t)(t2t0) of
Eqs.~46! and~48!—which is neglected because it is of order
gR

3 , but which is very large for largeL ~see Appendix D!.
From a practical point of view, the existence at any order of
these large terms of higher orders spoil the group law so that
the independence of the physical results with respect to the
choice of prescription point is not verified.

As in the case of the differential equation~47!, we can
look for an improved function:F imp,

F imp~x,g0 ,L!5g01ag0
2 logS L

x D1g0
3GS L

x D1O~g0
4!,

~58!

for which the group law at orderg0
3 is obeyed. It is shown in

Appendix D that this constraint implies that

G~x!5a2 log2 x1b logx, ~59!

whereb is arbitrary. Thus,

F imp~x,g0 ,L!5g01ag0
2 logS L

x D1a2g0
3 log2S L

x D
1bg0

3 logS L

x D1O~g0
4!. ~60!

Once again, we find that the group law together with the
order g0

2 result determines the leading behavior at the next
order, here the log2(L/x) term. Moreover, we find that the
group law imposes the existence of the same log2 term as the
one found from the renormalizability constraint, Eqs.~35!
and ~36!, and allows the existence of a sub-leading loga-
rithm. Although nontrivial, this should not be too surprising
because the renormalizability constraint means that onceF is
well defined atx5m, it also is everywhere and in particular
at x5m8. The renormalizability constraint is therefore cer-
tainly necessary for the implementation of the group law. As
in the example of the differential equation, Eq.~42!, we
should pursue the expansion to all orders to obtain an exactly
verified group law. It is clear that by doing so, we would find
the same expansion as the one obtained from the renormal-
izability constraint. Thus, if we use perturbation theory to
calculate the coefficient in front of the first leading logarithm
~of orderg0

2) and impose the group law, we should be able to
resum all the leading logarithms. To do the resummation of
the sub-leading and sub-sub-leading logarithms, a knowledge
of, respectively, the orderg0

3 and g0
4 terms is required.

Clearly, we need to understand how to systematically con-
struct the functionf giving gR8 in terms ofgR andm/m8,27

gR85 f S gR ,
m

m8D , ~61!

such that
• its expansion at ordern is given by thenth order of

perturbation theory,
• the group law isexactlyverified:

f S gR ,
m

m9D5 f S f S gR ,
m

m8D ,
m8

m9D . ~62!

The functionf is then said to be theself-similar approxima-
tion at order n of the exact relationship betweengR and
gR8 .30 First notice one crucial thing. Our first aim was to
study the perturbation expansion of a functionF in a power
series of a coupling constantg0 . Then we have discovered
that the logarithmic divergence at orderg0

2 propagates to all
orders so that the expansion is actually performed in
g0 logL/m instead ofg0 . BecauseL is the regulator, it is
supposed to be very large compared withm, so that the large
logarithmic terms invalidate the use of the perturbation ex-
pansion. Reciprocally, it is clear that perturbation theory is
perfectly valid if it is performed between two scalesm1 and
m2 which are very close. Thus, instead of using perturbation
theory to make a big jump between two very distinct scales,
say L and m, we should use it to perform a series of very
little steps for which it is valid at each of them. In geometri-
cal terms, the fact that the perturbative approach is valid only
between two very close scales means that we should not use
perturbation theory to approximate the equation of the curve
given by the functionf , Eq. ~61!, that joins the points
(m,gR) and (m8,gR8 ), but we should use it to calculate the
~field of! tangent vectors to this curve, that is, its envelope.
The curve itself should then be reconstructed by integration,
see Appendix E. By doing so, the group law will be auto-
matically verified because, by construction, the integration
precisely consists in composing infinitesimal changes of rep-
arametrization infinitely many times. Let us consider again
Eq. ~55!. We want to calculate the evolution ofgR(m) with m
for a given model specified by (L,g0). Thus we define

b~gR!5m
]gR

]m U
g0 ,L

, ~63!

which gives the infinitesimal evolution of the coupling con-
stants with the scale for the model corresponding to (g0 ,L).
We trivially find to this order from Eq.~55!,

b~gR!52ag0
21O~g0

3!, ~64!

and thus, by trivially inverting the series of Eq.~55!, we
obtain

b~gR!52agR
21O~gR

3 !. ~65!

Now, if we integrate Eq.~63! together with Eq.~65!, we
obtain

gR85
gR

12agR log
m

m8

. ~66!

This relation has several interesting properties.
~i! When expanded to ordergR

2 , the perturbation result to
this order is recovered, Eq.~57!. This is quite normal be-
causeb(gR) has been calculated to this order.

~ii ! When expanded to all orders, the whole series of lead-
ing logarithms is recovered. This is more interesting because
b(gR) has been calculated only to orderg2, but simply
means that all the leading logarithms are determined by the
first one.

~iii ! The group law~62! is obeyed exactly. We have thus
found the functionf of Eq. ~61! to this order. It is very
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instructive to check the group law directly from Eq.~66! and
to verify that theb function found in Eq.~65! is not modified
if we add the leading logarithmic term of orderg0

3 to relation
~55!:

gR5g01ag0
2 logS L

m D1a2g0
3 log2S L

m D1O~g0
4!. ~67!

The independence of theb function with respect to the
addition of the successive leading logarithmic terms means
that this function is indeed the right object to build self-
similar approximations out of the perturbation expansion.

Let us now return to theb function itself. First, we have
calculated the logarithmic derivativem]gR /]m instead of
the ordinary derivative with respect tom because we wanted
to have a dimensionlessb function. Second, even the dimen-
sionless quantity,b(gR), could have depended onL/m.
However, the evolution ofgR(m) betweenm and m1dm
cannot depend in perturbation theory onL because the
theory is perturbatively renormalizable: the perturbative re-
lation betweengR(m) andgR(m8) depends only onm andm8
and not onL. Thus, being dimensionless, theb function
cannot depend onm alone and is thus only a function ofgR .
This property is general for any renormalizable theory: in the
space of coupling constants, theb function is always alocal
function. Third, theb function is the function to be expanded
in perturbation theory because it is given by a true series in
gR and not ingR logL/m. This is clear for our example, Eq.
~65!, where there is no logarithm, and can be proven for-
mally by the following argument. If we use Eqs.~61! and
~63!, we find that

b~gR!52
] f

]y
~gR ,y! uy51

. ~68!

If f is a double series ing and in log(m/m8),

f S gR ,
m

m8D5(
n,p

an,pgR
n logp

m

m8
, ~69!

it is clear from Eq.~68! that only terms withp51 contribute
to b(g), with the logarithm replaced by21. Thus we im-
mediately deduce from this argument and from Eq.~36! that

b~gR!52agR
22bgR

32ggR
41O~gR

5 !. ~70!

It is easy to check that the first two coefficients,2a and
2b, are universal in the sense that for two different theories,
parametrized by (gR ,m) and (gR8 ,m), the two b functions
have the same first two coefficients in their expansions.

This method of computing theb function also lets us by-
pass the strange way to calculate it that we have used in Eqs.
~64! and ~65!, where we have first expressedgR in terms of
g0 to calculateb(gR) as a function ofg0 and then, by inver-
sion of the series, re-obtained a function ofgR . These two
steps area priori dangerous because they both involve large
logarithms. Actually, they always cancel each other. This can
be seen directly for the example of Eq.~67! and the reason
for this cancellation comes from Eqs.~68! and ~69!, which
show that no inversion of series is needed to calculate
b(gR). There is no miracle here, because only the behavior
at y5m/m851, which of course does not involveL, matters.

Finally, we mention that the integration of theb function
at O(gR

3)—analogous to a two-loop result in QFT—leads to
an implicit equation forgR8 that generalizes Eq.~66!:

1

gR8
2

1

gR
1

b

a
logS gR

gR8

a1bgR8

a1bgR
D 5a log

m8

m
. ~71!

There is no simple solution of this transcendental equation. It
is however possible to obtain an iterative solution that is
valid if the O(gR

3) term is small compared with theO(gR
2)

one, that is, ifgRb/a!1. It is obtained by replacinggR8 in
the third term of Eq.~71! by its expression obtained to order
gR

2 , Eq. ~66!:

gR85
gR

12agR log
m

m8
1

b

a
gR logS 12agR log

m

m8D
. ~72!

It is easy to check that Eq.~72! resums exactly all the leading
and sub-leading logarithms of the perturbation expansion Eq.
~41!. Note that contrary to the one-loop result, Eq.~66!,
which resums only the leading logarithms, the exact expres-
sion in Eq.~71! contributes also to the sub-sub-leading loga-
rithms as well as the sub-sub-sub-leading ones and so on and
so forth.

V. SUMMARY

~1! The long way of renormalization starts with a theory
depending on only one parameterg0 , which is the small
parameter in which perturbation series are expanded. In par-
ticle physics, this parameter is in general a coupling constant
like an electric charge involved in a Hamiltonian~more pre-
cisely the fine structure constant for electrodynamics!. This
parameter is also the first order contribution of a physical
quantity F. In particle/statistical physics,F is a Green/
correlation function. The first order of perturbation theory
neglects fluctuations—quantum or statistical—and thus cor-
responds to the classical/mean field approximation. The pa-
rameterg0 also is to this order a measurable quantity because
it is given by a Green function. Thus, it is natural to interpret
it as the unique and physical coupling constant of the prob-
lem. If, as we suppose in the following,g0 is dimensionless,
so is F. Moreover, if x is dimensional—it represents mo-
menta in QFT—it is natural thatF does not depend on it as
is found in the classical theory, that is, at first order of the
perturbation expansion.

~2! If F does depend onx, as we suppose it does at second
order of perturbation theory, it must depend on another di-
mensional parameter,L, through the ratio ofx andL. If we
have not included this parameter from the beginning in the
model, thex-dependent terms are either vanishing, which is
what happens at first order, or infinite as they are at second
and higher orders. This is the very origin of divergences
~from the technical point of view!.

~3! These divergences require that we regularizeF. This
requirement, in turn, requires the introduction of the scaleL
that was missing. In the context of field theory, the diver-
gences occur in Feynman diagrams for high momenta, that
is, at short distances. The cut-offL suppresses the fluctua-
tions at short distances compared withL21. In statistical
physics, this scale, although introduced for formal reasons,
has a natural interpretation because the theories are always
effective theories built at a given microscopic scale. It corre-
sponds in general to the range of interaction of the constitu-
ents of the model, for example, a lattice spacing for spins,
the average intermolecular distance for fluids. In particle
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physics, things are less simple. At least psychologically. It
was indeed natural in the early days of quantum electrody-
namics to think that this theory was fundamental, that is, not
derived from a more fundamental theory. More precisely, it
was believed that QED had to be mathematically internally
consistent, even if in the real world new physics had to occur
at higher energies. Thus, the regulator scale was introduced
only as a trick to perform intermediate calculations. The limit
L→` was supposed to be the right way to eliminate this
unwanted scale, which anyway seemed to have no interpre-
tation. We shall see in the following that the community now
interprets the renormalization process differently.

~4! Once the theory is regularized,F can be a nontrivial
function of x. The price is that different values ofx now
correspond to different values of the coupling constant~de-
fined as the values ofF for thesex). Actually, it no longer
makes sense to speak of a coupling constant in itself. The
only meaningful concept is the pair (m,gR(m)) of coupling
constants at a given scale. The relevant question now is,
‘‘What are the physical reasons in particle/statistical physics
that make the coupling constants depend on the scale while
they are constants in the classical/mean field approxima-
tion?’’ As mentioned, for particle physics, the answer is the
existence of new quantum fluctuations corresponding to the
possibility of creating~and annihilating! particles at energies
higher thanmc2. What was scale independent in the classical
theory becomes scale dependent in the quantum theory be-
cause, as the available energy increases, more and more par-
ticles can be created. The pairs of~virtual! particles sur-
rounding an electron are polarized by its presence and thus
screen its charge. As a consequence, the charge of an elec-
tron depends on the distance~or equivalently the energy! at
which it is probed, at least for distances smaller than the
Compton wavelength.

Note that the energy scalemc2 should not be confused
with the cut-off scaleL. mc2 is the energy scale above which
quantum fluctuations start to play a significant role whileL
is the scale where they are cut-off. Thus, although the Comp-
ton wavelength is a short distance scale for the classical
theory, it is a long distance scale for QFT, the short one being
L21. There are thus three domains of length scales in QFT:
above the Compton wavelength where the theory behaves
classically ~up to small quantum corrections coming from
high energy virtual processes!, between the Compton wave-
length and the cut-off scaleL21 where the relativistic and
quantum fluctuations play a great role, and belowL21 where
a new, more fundamental theory has to be invoked.12 In sta-
tistical physics, the analog of the Compton wavelength is the
correlation length which is a measure of the distance at
which two microscopic constituents of the system are able to
influence each other through thermal fluctuations.31 For the
Ising model, for instance, the correlation length away from
the critical point is the order of the lattice spacing and the
corrections to the mean-field approximation due to fluctua-
tions are small. Unlike particle physics where the masses and
therefore the Compton wavelengths are fixed, the correlation
lengths in statistical mechanics can be tuned by varying the
temperature. Near the critical temperature where the phase
transition takes place, the correlation length becomes ex-
tremely large and fluctuations on all length scales between
the microscopic scale of orderL21, a lattice spacing, and the
correlation length add up to modify the mean-field behavior
~see Refs. 32, 33 and also Ref. 34 for a bibliography on this

subject!. We see here a key to the relevance of renormaliza-
tion: two very different scales must exist between which a
nontrivial dynamics~quantum or statistical in our examples!
can develop. This situation isa priori rather unnatural as can
be seen for phase transitions, where a fine tuning of tempera-
ture must be implemented to obtain correlation lengths much
larger than the microscopic scale. Most of the time, physical
systems have an intrinsic scale~of time, energy, length, etc.!
and all the other relevant scales of the problem are of the
same order. All phenomena occurring at very different scales
are thus almost completely suppressed. The existence of a
unique relevant scale is one of the reasons why renormaliza-
tion is not necessary in most physical theories. In QFT it is
mandatory because the masses of the known particles are
much smaller than a hypothetical cut-off scaleL, still to be
discovered, where new physics should take place. This is a
rather unnatural situation, because, contrary to phase transi-
tions, there is no analog of a temperature that could be fine-
tuned to create a large splitting of energy, that is, mass,
scales. The question of naturalness of the models we have at
present in particle physics is still largely open, although there
has been much effort in this direction using supersymmetry.

~5! The classical theory is valid down to the Compton/
correlation length, but cannot be continued naively beyond
this scale; otherwise, when mixed with the quantum formal-
ism, it produces divergences. Actually, it is known in QFT
that the fields should be considered as distributions and not
as ordinary functions. The need for considering distributions
comes from the nontrivial structure of the theory at very
short length scale where fluctuations are very important. At
short distances, functions are not sufficient to describe the
field state, which is not smooth but rough, and distributions
are necessary. Renormalizing the theory consists actually in
building, order by order, the correct ‘‘distributional continu-
ation’’ of the classical theory. The fluctuations are then cor-
rectly taken into account and depend on the scale at which
the theory is probed: this nontrivial scale dependence can
only be taken into account theoretically through the depen-
dence of the~analog of the! functionF with x and thus of the
coupling with the scalem.

~6! If the theory is perturbatively renormalizable, the pairs
(m,g(m)) form an equivalence class of parametrizations of
the theory. The change of parametrization from (m,g(m)) to
(m8,g(m8)), called a renormalization group transformation,
is then performed by a law which is self-similar, that is, such
that it can be iterated several times while being
form-invariant.27,30This law is obtained by the integration of

b~gR!5m
]gR

]m U
g0 ,L

. ~73!

This function has a true perturbation expansion in terms of
gR unlike the perturbative relation betweengR(m) and
gR(m8) which involves logarithms ofm/m8 that can be large.
The integration of Eq.~73! partially resums the perturbation
series and is thus semi-nonperturbative even ifb(gR) has
been calculated perturbatively. The self-similar nature of the
group law is encoded in the fact thatb(gR) is independent of
L.5

In particle physics, theb function gives the evolution of
the strength of the interaction as the energy at which it is
probed varies and the integration of theb function resums
partially the perturbation expansion. First, as the energy in-
creases, the coupling constant can decrease and eventually
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vanish. This is what happens whena.0 in Eqs. ~65! and
~66!. In this case, the particles almost cease to interact at
very high energies or equivalently when they are very close
to each other. The theory is then said to be asymptotically
free in the ultraviolet domain.3,5 Reciprocally, at low ener-
gies the coupling increases and perturbation theory can no
longer be trusted. A possible scenario is that bound states are
created at a sufficiently low energy scale so that the pertur-
bation approach has to be reconsidered in this domain to take
into account these new elementary excitations. Non-Abelian
gauge theories are the only known theories in four space–
time dimensions that are ultraviolet free, and it is widely
believed that quantum chromodynamics—which is such a
theory—explains quark confinement. The other important
behavior of the scale dependence of the coupling constant is
obtained fora,0 in which case it increases at high energies.
This corresponds, for instance, to quantum electrodynamics.
For this kind of theory, the dramatic increase of the coupling
at high energies is supposed to be a signal that the theory
ceases to be valid beyond a certain energy range and that
new physics, governed by an asymptotically free theory~like
the standard model of electro-weak interactions!, has to take
place at short distances.

~7! Renormalizability, or its nonperturbative equivalent,
self-similarity, ensures that although the theory is initially
formulated at the scaleL, this scale together withg0 can be
entirely eliminated for another scale better adapted to the
physics we study. If the theory was solved exactly, it would
make no difference which parametrization we used. How-
ever, in perturbation theory, this renormalization lets us
avoid calculating small numbers as differences of very large
ones. It would indeed be very unpleasant, and actually mean-
ingless, to calculate energies of order 100 GeV, for
instance—the scalem of our analysis—in terms of energies
of order of the Planck scale.1019 GeV, the analog of the
scaleL. In a renormalizable theory, the possibility to pertur-
batively eliminate the large scale has a very deep meaning: it
is the signature that the physics is short distance insensitive
or equivalently that there is a decoupling of the physics at
different scales. The only memory of the short distance scale
lies in the initial conditions of the renormalization group
flow, not in the flow itself: theb function does not depend on
L. We again emphasize that, usually, the decoupling of the
physics at very different scales is trivially related to the ex-
istence of a typical scale such that the influence of all phe-
nomena occurring at different scales is almost completely
suppressed. Here, the decoupling is much more subtle be-
cause there is no typical length in the whole domain of
length scales that is very small compared with the Compton
wavelength and very large compared withL21. Because in-
teractions among particles correspond to nonlinearities in the
theories, we could naively believe that all scales interact with
each other—which is true—so that calculating, for instance,
the low energy behavior of the theory would require the de-
tailed calculation of all interactions occurring at higher ener-
gies. Needless to say that in a field theory, involving infi-
nitely many degrees of freedom—the value of the field at
each point—such a calculation would be hopeless, apart
from exactly solvable models. Fortunately, such a calculation
is not necessary for physical quantities that can be calculated
from renormalizable couplings only. Starting at very high
energies, typicallyL, where all coupling constants are natu-
rally of order 1, the renormalization group flow drives almost
all of them to zero, leaving only, at low energies, the renor-

malizable couplings. This is the interpretation of nonrenor-
malizable couplings. They are not terrible monsters that
should be forgotten as was believed in the early days of QFT.
They are simply couplings that the RG flow eliminates at
low energies. If we are lucky, the renormalizable couplings
become rather small after their RG evolution betweenL and
the scalem at which we work, and perturbation theory is
valid at this scale.

We see here the phenomenon of universality: among the
infinitely many coupling constants that area priori necessary
to encode the dynamics of the infinitely many degrees of
freedom of the theory, only a few ones are finally relevant.35

All the others are washed out at large distances. This is the
reason why, perturbatively, it is not possible to keep these
couplings finite at large distance, and it is necessary to set
them to zero.36 The simplest nontrivial example of universal-
ity is given by the law of large numbers~the central limit
theorem! which is crucial in statistical mechanics.32 In sys-
tems where it can be applied, all the details of the underlying
probability distribution of the constituents of the system are
irrelevant for the cooperative phenomena which are gov-
erned by a Gaussian probability distribution.37 This drastic
reduction of complexity is precisely what is necessary for
physics because it lets us build effective theories in which
only a few couplings are kept.12 Renormalizability in statis-
tical field theory is one of the nontrivial generalizations of
the central limit theorem.

~8! The cut-offL, first introduced as a mathematical trick
to regularize integrals, has actually a deep physical meaning:
it is the scale beyond which new physics occur and below
which the model we study is a good effective description of
the physics. In general, it involves only the renormalizable
couplings and thus cannot pretend to be an exact description
of the physics at all scales. However, ifL is very large com-
pared with the energy scale in which we are interested, all
nonrenormalizable couplings are highly suppressed and the
effective model, retaining only renormalizable couplings, is
valid and accurate~the Wilson RG formalism is well suited
to this study, see Refs. 35 and 38!. In some models—the
asymptotically free ones—it is possible to formally take the
limit L→` both perturbatively and nonperturbatively, and
there is therefore no reason to invoke a more fundamental
theory taking over at a finite~but large! L. Let us emphasize
here several interesting points.

~i! For a theory corresponding to the pair (m,gR(m)), the
limit L→` must be taken within the equivalence
class of parametrizations to which (m,gR(m))
belongs.39 A divergent nonregularized perturbation
expansion consists in takingL5` while keepingg0
finite. From this viewpoint, the origin of the diver-
gences is that the pair (L5`,g0) does not belong to
any equivalence class of a sensible theory. Perturba-
tive renormalization consists in computingg0 as a
formal powers series ingR ~at finite L!, so that
(L,g0) corresponds to a mathematically consistent
theory; we then take the limitL→`.

~ii ! Because of universality, it is physically impossible to
know from low energy data ifL is very large or truly
infinite.

~iii ! Although mathematically consistent, it seems unnatu-
ral to reverse the RG flow while keeping only the
renormalizable couplings and thus to imagine that
even at asymptotically high energies, Nature has used
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only the couplings that we are able to detect at low
energies. It seems more natural that a fundamental
theory does not suffer from renormalization problems.
String theory is a possible candidate.40

To conclude, we see that although the renormalization pro-
cedure has not evolved much these last thirty years, our in-
terpretation of renormalization has drastically changed:12 the
renormalized theory was assumed to be fundamental, while it
is now believed to be only an effective one;L was inter-
preted as an artificial parameter that was only useful in in-
termediate calculations, while we now believe that it corre-
sponds to a fundamental scale where new physics occurs;
nonrenormalizable couplings were thought to be forbidden,
while they are now interpreted as the remnants of interaction
terms in a more fundamental theory. Renormalization group
is now seen as an efficient tool to build effective low energy
theories when large fluctuations occur between two very dif-
ferent scales that change the physics qualitatively and quan-
titatively.
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APPENDIX A: TOY MODELS FOR
RENORMALIZABLE AND NONRENORMALIZABLE
PERTURBATION EXPANSIONS

We give an example of a nonrenormalizable theory and of
a theory which needs two couplings to be renormalized. Let
us suppose that

F1,L~x!5aE
1

L

dt
t

t1x
, ~A1!

which, unlike the example of Eq.~5!, is linearly divergent.
To renormalize this function, we have to impose a prescrip-
tion at one point, and we choose

FL~0!5gR . ~A2!

Note that it was not possible in the example of Eq.~5! to take
m50, because this choice would have lead to a divergence
of the integral at the lower bound. In Eq.~A1! takingm50 is
possible because the lower bound of the integral is nonvan-
ishing and actually plays somewhat the role of a nonvanish-
ing m. We have

d2g52agR
2E

1

L

dt, ~A3!

so that

FL~x!5gR2agR
2xE

1

L dt

t1x
, ~A4!

which is still ~logarithmically! divergent for allxÞ0. The
difference between the two examples given in Eqs.~5! and
~A1! is that in the last one, once the linear divergence has
been subtracted, the logarithmic sub-divergence remains.
Subtracting it would require us to impose a second prescrip-
tion that would define a new coupling constant. In the ab-
sence of this second coupling constant, the logarithmic di-
vergence cannot be subtracted and the model is
nonrenormalizable.

Let us examine how a second coupling constant could
solve the problem. Generically, this second coupling, which
we call l0 , already contributes at first order. We take as an
example

FL~x!5g01l0x1ag0
2E

1

L

dt
t

t1x
1O~g0

3!. ~A5!

Let us take as renormalization prescriptions,

]FL

]x
~x50!5lR , ~A6!

in addition to Eq.~A2!. We obtain at first order thatg0

5gR1O(gR
2) andl05lR1O(gR

2) and at second order

d2g52agR
2E

1

L

dt, ~A7!

d2l5agR
2E

1

L dt

t
. ~A8!

If we substitute these expressions in Eq.~A5!, we find

FL~x!5gR1lRx1agR
2x2E

1

L dt

t~ t1x!
1O~gR

3 !. ~A9!

Obviously, this expression converges whenL→`. The two
renormalization prescriptions let us subtract the linear diver-
gence as well as the logarithmic sub-divergence. We empha-
size that in the previous example we only eliminated the
second divergence at orderg0

2. At higher orders, there are
two ways a theory can behave, characterized by two different
renormalizability properties. The first one is that all diver-
gences can be removed to all orders by renormalizing only
the two couplingsg0 andl0 . A variant of this possibility is
that a third coupling—or a finite number of new couplings—
turns out to be necessary and sufficient to remove the diver-
gences. In this case, the model is renormalizable at the price
of introducing all the necessary couplings. The second pos-
sibility is that the new interaction term, which has induced
the existence of thel0 term inF, generates new divergences
at higher orders. In this case, new interaction terms~and
coupling constants! are required to remove the new diver-
gences. These new terms can themselves generate new diver-
gences at even higher orders, which require new couplings to
be removed and so on and so forth. In this case, infinitely
many interaction terms are necessary to remove the diver-
gences and the model is perturbatively nonrenormalizable.

APPENDIX B: DERIVATION OF EQ. „22…

Let us show that it is always possible to make the choice
used in Eq.~22!. Due to condition~15!, we have generally

F1,L
s ~x!2F1,L

s ~m!→g18~x,m! when L→`, ~B1!
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where the limit g18 is a well-defined function satisfying
g18(x,m)52g18(m,x). If we first evaluateF1,L

s (x) in Eq.
~B1! at x51 for instance and atm51 and subtract them, we
obtain thatg18 has the following form:

g18~x,m!5g1~x!2g1~m!, ~B2!

namely, a combination of the same function ofx and m.
Then, by redefiningF1,L

s : F1,L
s →F1,L

s 2g1 we satisfy Eq.
~22!. Note that the previous choice of singular part is not
necessary and is only convenient.

APPENDIX C: LOGARITHMIC DIVERGENCES IN
RENORMALIZABLE THEORIES WITH
DIMENSIONLESS COUPLINGS

We prove for renormalizable theories with dimensionless
couplings thatF1,L

s (x) must be a logarithm. If we use Eq.
~23!, dimensional analysis, and the freedom to choose the
regular part ofF1,L , we have

F1,L
s ~x!5 f S x

L D5 f 1~L!1r ~x!. ~C1!

Note that in full generality, the regular part we add tof 1(L)
could depend onL: r L(x). However, because it is regular,
we can choose to add only theL-independent function cor-
responding to theL→` limit of r L : r (x)5r `(x). If we
differentiate Eq.~C1! with respect tox and then takex51
andL51/y, we obtain

f 8~y!5
r 8~1!

y
, ~C2!

and thus

f ~y!52a logy, ~C3!

where the minus sign has been written for convenience.
From ~C1! and ~C3! we conclude thatf (x)5r (x)52 f 1(x)
and that

F1,L
s ~x!5 f S x

L D5 f ~x!2 f ~L!5a log
L

x
. ~C4!

APPENDIX D: RENORMALIZATION GROUP
IMPROVED EXPANSION

We show how to derive Eq.~59!. Consider the definition
of F imp:

F imp~x,g0 ,L!5g01ag0
2 logS L

x D1g0
3GS L

x D1O~g0
4!.

~D1!

We can calculategR and gR8 from their definitions~where
F imp is used instead ofF) and from Eq.~D1!:

gR5g01ag0
2 logS L

m D1g0
3GS L

m D1O~g0
4!, ~D2!

gR85g01ag0
2 logS L

m8D1g0
3GS L

m8D1O~g0
4!. ~D3!

If we invert the seriesgR5gR(g0) of Eq. ~D2!, we obtain

g05gR2agR
2 logS L

m D12a2gR
3 log2S L

m D2gR
3GS L

m D
1O~gR

4 !. ~D4!

Thus, substituting this expression forg0 in gR85gR8 (g0), Eq.
~D2!, we obtain

gR85gR1agR
2 logS m

m8D1gR
3F2a2S log2S L

m D
2 logS L

m D logS L

m8D D1GS L

m8D2GS L

m D G . ~D5!

The group law is obeyed at this order if the relation between
gR8 andgR is of the same form as the one betweengR andg0 ,
Eq. ~D3!. This condition requires

gR85gR1agR
2 logS m

m8D1gR
3GS m

m8D1O~gR
4 !, ~D6!

and thus

2a2 log
L

m
log

m8

m
1GS L

m8D2GS L

m D5GS m

m8D . ~D7!

By differentiating this relation with respect toL and by tak-
ing L5m, we find, settingx5m/m8:

G8~x!52a2
logx

x
1

G8~1!

x
. ~D8!

If we take into account thatG(1)50, we find by integration

G~x!5a2 log2 x1b logx, ~D9!

whereb is arbitrary.

APPENDIX E: THE RENORMALIZATION GROUP
APPLIED TO A DIFFERENTIAL EQUATION

We show how the renormalization program can be imple-
mented for the example of the differential equation~42!
whose exact solution is

y~ t !5 f ~r 0 ,t2t0!5r 0ee(t2t0). ~E1!

In perturbation theory, we find

y~ t !5r 0S 11e~ t2t0!1
e2

2
~ t2t0!21 ¯ D . ~E2!

Fig. 2. The curvey(t) as a function oft. The ~thick! lower line is the
approximation of ordere, see Eq.~E2!. The other lines represent the~field
of! tangent vectors to the curve—the envelope—given by theb function,
Eq. ~E7!.
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At order e0, y(t) is constant and finite, whereas, at any
higher order ine, a divergence occurs fort0→2`. This
divergence arises of course from the fact that the expansion
turns out to be in powers ofe(t2t0) and not in powers ofe
alone ~the secular problem!. Thus, as shown in Fig. 2, the
approximation of orderO(e) becomes worse and worse ast
increases. A renormalization prescription consists here in im-
posing that for a finitet :

y~t!5r t . ~E3!

If we perform the calculation to ordere, we find to first
order:

r t5r 0~11e~t2t0!!1O~e2!, ~E4!

and thus, as expected,

y~ t !5r t~11e~ t2t!!1O~e2!. ~E5!

The theory is perturbatively renormalizable at this order be-
cause by imposing a single renormalization prescription, it is
possible to completely eliminatet0 andr 0 . Let us define the
b-function for r t by

b~r t!5
]r t

]t U
r 0 ,t0

5
] f

]z
~r t ,z!U

z50

. ~E6!

We find

b~r t!5er t1O~e2!. ~E7!

It is very instructive to perform this calculation at higher
orders because we then find that theO(e) result of Eq.~E7!
is exact@this result is trivially shown using the second equal-
ity of Eq. ~E6!#. Thus, there is noO(e2) corrections to
b(r t). This result means that, in this example, there is no
sub-leading terms such asen(t2t0)p with p,n in the per-
turbation expansion.

Clearly, theb function gives the tangent to the curvey(t).
Equation~E7! shows that contrary toy(t), theb function has
a truee expansion~involving only one term in this example!.
This result is reminiscent of what we have already observed
in our general discussion, see Eqs.~36! and~70!. Of course,
this example is too simple because using theb function leads
to the same differential equation forr t as the one fory(t)
that we started with, Eq.~42!: the RG does not help us to
solve ordinary differential equations. However, although
mathematically trivial, our analysis shows that perturbation
theory should not be used for larget2t0 , but that it is per-
fectly valid for infinitesimal time steps, see Fig. 2. It also
shows that the higher order terms of the perturbation expan-
sion are completely analogous to the series of the leading
logarithms we have previously encountered: they are entirely
determined by theO(e) term together with self-similarity
~encoded in theb function!. Note finally that for partial dif-
ferential equations~PDE! that describe the dynamics of infi-
nitely many degrees of freedom~as in field theory!, the RG
techniques do not let us reconstruct the PDE from the first
orders of perturbation theory. Theb functions lead to ordi-
nary differential equations, the integration of which let us
improve the perturbation computation of several quantities
thanks to a partial resummation of the perturbation
expansion.27,30
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